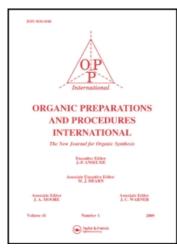
This article was downloaded by:


On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Organic Preparations and Procedures International

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t902189982

PREPARATION OF α , α -DIALKYL- β -HALOKETONES

Paul Sulmon^{ab}; Norbert De Kimpe^a; Niceas Schamp^a

^a Laboratory of Organic Chemistry, Faculty of Agricultural Sciences, State University of Gent, Gent, BELGIUM ^b Laboratory of Chemical Products, DSM Limburg b.v., Geleen, The Netherlands

To cite this Article Sulmon, Paul , De Kimpe, Norbert and Schamp, Niceas(1989) 'PREPARATION OF α , α -DIALKYL- β -HALOKETONES', Organic Preparations and Procedures International, 21: 1, 91 - 104

To link to this Article: DOI: 10.1080/00304948909356351 URL: http://dx.doi.org/10.1080/00304948909356351

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PREPARATION OF α , α -DIALKYL- β -HALOKETONES Paul Sulmon⁺, Norbert De Kimpe* and Niceas Schamp

Laboratory of Organic Chemistry Faculty of Agricultural Sciences State University of Gent Coupure Links 653, B-9000 Gent, BELGIUM

β-Haloketones are a class of bifunctional compounds, the synthesis of which has already been described in a number of publications. ¹⁻²⁴ They can be prepared from β-hydroxyketones 1 by substitution of the hydroxyl group by a halogen atom, ¹⁻¹³ or from cyclopropanols 6 and allylic alcohols 4 by reaction with hypochlorites or hypobromites. ¹⁴⁻²⁴ For the preparation of large quantities of β-haloketones 2 with two substituents in the α -position ($R_2 = R_3 = alkyl$) the transformation of β-hydro-

SCHEME I

xyketones $\underline{1}$ to β -haloketones $\underline{2}$ seems to be the most straigth-forward method. Recently we required substantial amounts of

^{©1989} by Organic Preparations and Procedures Inc.

 β -halogenated ketones. The synthetic methods described in the literature raised several problems. This article describes an alternative method for the preparation of α , α -dialkyl- β -haloketones free of side-reactions. The synthesis of compounds $\underline{2}$ is divided into two parts, namely the formation of β -hydroxyketones $\underline{1}$ and the transformation of β -hydroxyketones into the corresponding β -haloketones.

The formation of β -hydroxyketones $\underline{1}$ via acid catalyzed reaction of ketones with formaldehyde, according to a literature method⁷, was less attractive for large-scale preparations due to the formation of numerous side-products depending upon the

SCHEME II

reaction conditions. However, this method was taken as a basis for further improvements of the preparation of β -hydroxyketones. The first part of this method, namely the reaction of ketone $\underline{7}$ with paraformaldehyde in trifluoroacetic acid with the formation of trifluoroacetate $\underline{8}$, was easily performed at reflux temperature and the transformation could be followed by $^1\text{H-NMR}$.

It was found that the quantity of the expensive solvent (i.e. TFA) used to perform this transformation could be reduced to two molar equivalents in comparison with the original report. The second part of the formation of β -hydroxyketones $\underline{1}$, namely the transformation of β -trifluoroacetoxyketones $\underline{8}$ to the corresponding β -hydroxyketones $\underline{1}$, gave problems (Table 1, entries 1-15). The literature procedure $\overline{1}$, namely the transformation of

SCHEME III

SCHEME IV

of 8 to 1 using an aqueous sodium hydroxide solution, gave, depending upon the reaction conditions and especially the molar quantities, many side-products. The aqueous workup of the trifluoroacetate derived from the reaction of 3-methyl-2-butanone $\frac{7b}{1} (R_1 = R_2 = R_3 = CH_3) \text{ with paraformaldehyde in trifluoroacetic acid afforded, with the expected 4-hydroxy-3,3-dimethyl-2-butanone <math>\frac{1b}{1}$, also variable amounts (up to 60%) of the acetal $\frac{13}{1}$ (Table 1, entry 4). The reaction of isobutyrophenone $\frac{7c}{1}$

 $(R_1 = Ph, R_2 = R_3 = Me)$ with paraformaldehyde in trifluoroacetic acid, followed by workup of the reaction mixture with an aqueous sodium hydroxide solution afforded three reaction products, namely the expected ketone <u>1c</u>, 1-phenyl-2,2-dimethyl-1,3-propanediol <u>14</u> and 4-phenyl-5,5-dimethyl-1,3-dioxane <u>15</u> (Table 1, entries 7 and 8). The reaction of diisopropyl ketone <u>7f</u> $(R_1 = \underline{i} - Pr, R_2 = R_3 = Me)$ with the same reagents gave, in addition to β -hydroxyketone <u>1f</u>, diol <u>16</u> in variable amounts (0-35%) (Table 1: entry 13). Compounds <u>14</u> and <u>16</u> were formed during the workup by the Cannizarro reaction from the excess formal-dehyde present in the medium through reaction with β -hydroxy-

SCHEME V

ketones <u>1c</u> and <u>1f</u>. Dioxane <u>15</u> was formed from formaldehyde and propanediol <u>14</u>, while dione <u>13</u> resulted from reaction of formaldehyde with two molecules of β -hydroxyketone <u>1b</u>. In order to avoid all these side reactions the original literature procedure was modified. Instead of using an aqueous sodium hydroxide solution, an aqueous sodium bicarbonate or aqueous potassium carbonate solution was used. When this adapted method was applied no side products were found and β -hydroxyketones <u>1</u> were isolated as the sole compounds in high yields (85-95%). The reaction conditions and the spectral data of β -hydroxyketones 1 are compiled in Tables 1, 2 and 3.

2. TRANSFORMATION OF β -HYDROXYKETONES INTO β -HALOKETONES The transformation of β -hydroxyketones 1 into β -haloketones 2 was performed according to known principles from the literature. By reaction of β-hydroxyketones 1 with p-toluenesulfonyl chloride in pyridine at room temperature, β -tosyloxyketones 11 were formed in nearly quantitative yields (Table 1, entries 16-21). On reaction of compounds 11 with lithium chloride in dimethylformamide, \beta-chloroketones 10 were produced while on reaction of 11 with lithium bromide in 2-butanone (MEK) β -bromoketone 12 was the only product isolated (Table 1, entries 27-34). An alternative method for the preparation of β -hydroxyketones consisted of the reaction of β -hydroxyketones 10 with thionyl chloride in pyridine (Table 1; entries 23 and 24). It was somehow surprising that, when this reaction was performed at 0°C it was not possible to isolate compound 10 from the reaction The isolated compound was a product with an AB-system (${}^{1}\text{H-NMR}$) in the region of 4 ppm and structure $\underline{9}$ was proposed for the isolated compound. On the other hand, β -chloroketones 10 were the only isolated products when the reaction of β -hydroxyketones 1 was performed with thionyl chloride in pyridine at higher temperature or when the reaction mixture obtained at 0°C was warmed up. The latter alternative method was hardly used for the preparation of β -chloroketones 10, because via this method the yield of the compound 10 was lower than through transformation of $\underline{1}$ into ketone $\underline{10}$ via tosylate $\underline{11}$. The spectral data of β -haloketones 10 and 12 and β -tosyloxyketones 11 are given in Tables 2 and 3.

In conclusion it can be stressed that an improved method for

Table 1. Preparation of β -Hydroxyketones $\underline{1}$, β -Tosyloxyketones $\underline{11}$ and β -Haloketones $\underline{10}$ and $\underline{12}$.

	Star- ting Com- pound	R ₁	^R 3	R ₂	Reaction Co	$^{ m anditions}^{ m a}$		Yield (%) ^b	bp./mp.
I	<u>7a</u>	Me	-(CH ₂) 5-	CH ₂ O/CF ₃ COOH (1.1E/2E)	NaOH/H ₂ O (2N/5E)	<u>la</u>	: 95%	bp. 131-133°C
					∆ 8h	RT IOh			10mm Hg
2	<u>7a</u>	Me	-(CH ₂)) ₅ -	CH ₂ O/CF ₃ COOH (1.1E/2E)	K ₂ CO ₃ /H ₂ O (10E/10%)	<u>l a</u>	: 100%	bp. 131-133°C
					∆ 8h	RT 4d			10mm Hg
3	<u>7b</u>	Me	Me	Me	CH ₂ O/CF ₃ COOH (1.3E/5E)	NaOH/H ₂ O (2N/2E)	<u>lb</u>	: 92% ^c	bp. 85-90°C/
					24h 60°C	RT 2h			18mm Hg
4	<u>7b</u>	Me	Ме	Ме	CH ₂ O/CF ₃ COOH (1.5E/2E)	NaOH/H ₂ O (2N/5E)	<u>1b</u>	: 35% ^d	bp. 45-48°C/
					Δ 20h	RT 2h			0.05mm Hg
5	<u>7b</u>	Me	Me	Me	CH ₂ O/CF ₃ COOH (1E/2E)	NaHCO3/H2O (10E/10%)	<u>l b</u>	: 95%	bp. 85-90°C/
					∆ 7h	RT : ld			18mm Hg
6	<u>7 b</u>	Me	Me	Мe	CH ₂ O/CF ₃ COOH (1E/2E)	K ₂ CO ₃ /H ₂ O (10E/10%)	<u>l b</u>	: 92%	bp. 85-90°C/
					Λ 7h	RT 4d			18mm Hg
7	<u>7 c</u>	с ₆ н ₅	Me	Ме	CH ₂ O/CF ₃ COOH (1E/2E)	NaOH/H ₂ O (2N/5E)	<u>l c</u>	: 79% ^{e,f}	bp. 100-104°C
					∆ 12h	RT Id			0.2mm Hg
8	<u>7c</u>	C6H5	Me	Me	CH ₂ O/CF ₃ COOH (1E/2E)	NaOH/H ₂ O (2N/5E)	<u>1</u> c	: 0% ^g	_
					A 2d	RT ld			
9	<u>7 c</u>	С ₆ ^Н 5	Ме	Мe	CH ₂ O/CF ₃ COOH (2E/2E)	κ ₂ CO ₃ /H ₂ O (10E/10%)	<u>1 c</u>	: 90%	bp. 100-104°C
					A 22h	RT 4d			0.2mm Hg
0.	<u>7d</u>	-(CH ₂) ₄	_	Ме	CH ₂ O/CF ₃ COOH (1.1E/2E)	NaHCO ₃ /H ₂ O (10E/10%)	<u>l d</u>	: 90%	bp. 95-100°C/
					A 2h	RT 3d			8mm Hg or
									80°C/0.1mm Hg
11	<u>7 e</u>	4-MeC ₆ H ₄	Me	Me	CH ₂ O/CF ₃ COOH (1.1E/2E)	NaHCO ₃ /H ₂ O (10E/10%)	<u>l e</u>	: 85% ^h	-
					A 8h	RT 3d			
2	<u>7 f</u>	<u>i</u> -Pr	Me	Me	CH ₂ O/CF ₃ COOH (1E/2E)	NaOH/H ₂ O (2N/5E)	<u>l</u> <u>f</u>	: 85% ^{i,j}	bp. 87-90°C/
					∴ 20h	RT 2h			13mm Hg
3	<u>7 f</u>	<u>i</u> -Pr	Me	Me	CH ₂ 0/CF ₃ COOH (2E/2E)	NaOH/H ₂ O (10E/2N)	<u>l f</u>	: 58% ^k	bp. 87-90°C/
					∴ 20h	RT 20h			13mm Hg
4	<u>7 f</u>	<u>i</u> -Pr	Me	Me	CH ₂ O/CF ₃ COOH (2E/2E)	NaHCO ₃ /H ₂ O (10E/10%)	<u>l f</u>	: 92%	bp. 87-90°C/
					∴ 20h	RT 2d			13mm Hg
. 5	<u>7 f</u>	<u>i</u> -Pr	Ме	Me	СН ₂ 0/СF ₃ СООН (2E/2E)	K ₂ CO ₃ /H ₂ O (10E/10%)	<u>l f</u>	: 90%	bp. 87-90°C/
					∴ 20h	RT 2d			13mm Hg
6	<u>l a</u>	Ме	-(CH ₂)	5	TsCl/pyridine (1.1E/10)	%) RT 10h	<u>l l a</u>	: 87-92%	mp. 46°C
1 7	<u>1b</u>	Ме	Me	Ме	TsCl/pyridine (1.2E/10	%) RT 20h	116	: 9121	mp. 56°C

	-						
18	<u>lc</u>	^С 6 ^Н 5	Me	Me	TsCl/pyridine (1.1E/10%) RT 18h	11c : 862 ^m	mp. 71°C
19	<u>ld</u>	-(CH ₂) ₄		Me	TsCl/pyridine (1.1E/10%) RT 2d	11d : 90%	mp. 56°C
20	<u>ld</u>	4-MeC ₆ H ₄	Me	Me	TsCl/pyridine (1.1E/10%) RT 4d	<u>lle</u> : 83%	mp. 59°C
21	<u>lf</u>	<u>i</u> -Pr	Me	Мe	TsCl/pyridine (1.1E/10%) RT 2d	11f : 92%°,p	-
22	<u>1 b</u>	Me	Me	Me	HC1 (conc.) (10E) RT 20h	<u>10b</u> : 0%	-
23	<u>1b</u>	Ме	Me	Мe	SOCl ₂ /pyridine (1E/10%) 0° 2h	9:83% ^q	-
24	<u>lb</u>	Me	Me	Me	$SOC1_2$ /pyridine (1E/10%) Δ 1h	<u>10b</u> : 682 ^r	bp. 60-65°C/
							15mm Hg
25	<u>11b</u>	Ме	Me	Me	HC1 (10E) RT 20h	10b : 0%	-
26	<u>11b</u>	Me	Me	Me	HC1 (10E) Δ 48h	<u>10b</u> : 0%	-
27	<u>11b</u>	Me	Me	Me	LiC1/MEK (2E/10%) Δ 48h	10b : 0%	-
28	<u>11b</u>	Me	Me	Me	LiC1/DMF (2E/10%) Δ 3d	<u>10b</u> : 82%	bp. 60-65°C/
							15mm Hg
29	<u>11b</u>	Me	Me	Me	LiBr/acetone (2E/10%) \triangle 2d	<u>12</u> : 85% ^t	-
30	<u>11a</u>	Me	-(CH ₂) 5-	L1C1/DMF (2E/10%) Δ 10h	10a : 90%	bp. 110-112°C/
							10mm Hg
31	<u>11c</u>	C6 ^H 5	Me	Me	LiC1/DMF (2E/10%) Δ 24h	<u>10c</u> : 85% ^u	bp. 82-86°C/
							O.1mm Hg
32	<u>lld</u>	-(CH ₂) ₄	-	Me	LiC1/DMF (2E/10%) Δ 8h	<u>10d</u> : 94%	bp. 102-109°C/
							12mm Hg
33	<u>lle</u>	4-MeC ₆ H ₄	Me	Me	LiC1/DMF (1.5E/10%) Δ 1d	<u>10e</u> : 882 ^v	bp. 105-112°C/
							O.lmm Hg
34	<u>11f</u>	<u>i</u> -Pr	Me	Me	L1C1/DMF (2E/10%) Δ 3d	<u>10f</u> : 90%	bp. 75-78°C/
							13mm Hg

a) E = molar equivalents; Δ = reflux; h = hours; RT = room temperature; N = normal; conc = concentrated. b) Compounds 1a, 1d, 10a, 10d, 11a, 11d, 13, 14, 15 and 16 gave correct elemental analyses. c) Lit. 25 bp. $78-79^{\circ}$ C/14mm Hg. d) 60% 5,7-dioxa-3,3,9,9-tetramethyl-2,10-undecanedione 13; bp. $98-102^{\circ}$ C/0.02mm Hg or 115° C/0.8mm Hg; mp. 50° C. e) Lit. 9 bp. $152-153^{\circ}$ C/12mm Hg. f) 4% 1-phenyl-2,2-dimethyl-1,3-propanediol 14; bp. $120-125^{\circ}$ C/0.01mm Hg; mp. 78° C; 16% starting material. g) 47% 4-phenyl-5,5-dimethyl-1,3-dioxane 15; 53% starting material. h) This compound was not purified, but immediately transformed into the corresponding tosylate (crude yield given). i) Lit. 26-27 bp. 88° C/12mm Hg. j) Also 8% starting material. k) 35% 2,2,4-Trimethyl-1,3-pentanediol 16. 1) Lit. 6 mp. 10 mp. 10

Table 2. Spectral Data of β -Hydroxyketones $\underline{1}$, β -Tosyloxyketones $\underline{11}$ and β -Haloketones $\underline{10}$ and $\underline{12}$.

Com- pound	IR (cm ⁻¹)	¹ H-NMR
<u>8b</u>	-	$\delta(CF_3COCH)$: 1.21 (6H,s,($C\underline{H}_3$) ₂); 2.23 (3H,s, $C\underline{H}_3C=0$); 4.41 (2H,s, $C\underline{H}_2$).
<u>8c</u>	-	$\delta(\mathtt{CF_3^{COOH}}) : 1.51 \ (\mathtt{6H,s,(C\underline{H}_3)_2}); \ 4.62 \ (\mathtt{2H,s,C\underline{H}_2}); \ 7.20-7.80 \ (\mathtt{5H,m,C_6\underline{H}_5}).$
<u>8d</u>	-	$\delta(\texttt{CDCl}_3) \ : \ 1.23 \ (\texttt{3H,s,C}_{\underline{\textbf{H}}_3}); \ 1.00-3.00 \ (\texttt{8H,m,(C}_{\underline{\textbf{H}}_2})_4); \ 4.34 \ \texttt{and} \ 4.48 \ (\texttt{2H,2xd,AB,}); \ 4.34 \ \texttt{Model}_3 \ (\texttt{2H,2xd,AB,}); \ 4.34 \ \texttt{Model}_4 \ \texttt$
		$c_{\underline{H}_2}$ 0).
<u>8f</u>	-	$ \hat{\text{o}}(\text{CF}_3\text{COOH}) : 1.16 \; (\text{6H,d,J=6.8Hz,CH}(\text{C}\underline{\text{H}}_3)_2); \; 1.37 \; (\text{6H,s,(C}\underline{\text{H}}_3)_2); \; 3.30 \; (\text{1H,sep-model}) $
		tet,J=6.8Hz,C \underline{H} (CH ₃) ₂); 4.50 (2H,s,C \underline{H} ₂).
<u>la</u>	∨ _{C=0} : 1705	$\delta(\text{CC1}_4) : 1.00-2.40 \text{ (10H,m,(CH}_2)_5); 2.21 \text{ (3H,s,CH}_3\text{C=0); 3.63 (2H,s,CH}_2\text{OH);}$
	v _{он} : 3445	3.40-3.80 (1H,s,br, $0H$).
<u>1b</u>	∨ _{C=0} : 1710	$\delta(\texttt{CCl}_{4}) \; : \; \texttt{1.08} \; \; (\texttt{GH},\texttt{s},(\texttt{C}\underline{\texttt{H}}_{3})_{2}); \; \; \texttt{2.09} \; \; (\texttt{3H},\texttt{s},\texttt{C}\underline{\texttt{H}}_{3}\texttt{C=0}); \; \; \texttt{3.44} \; \; (\texttt{2H},\texttt{s},\texttt{C}\underline{\texttt{H}}_{2}); \; \; \texttt{2.80} \; \; (\texttt{1H},\texttt{s},\texttt{C}\underline{\texttt{M}}_{3}); \; \; \texttt{3.44} \; \; \texttt{Mathematical Constraints} $
	∨ _{OH} : 3450	br,OH).
<u>1 c</u>	v _{C=0} : 1676	$\delta(\mathtt{CDCl}_3): 1.37 \ (\mathtt{6H,s,(CH}_3)_2); 3.48 \ (\mathtt{1H,s,br,OH}); 3.73 \ (\mathtt{2H,s,CH}_2); 7.20-8.00$
	v _{OH} : 3460	$(5H,m,C_6\underline{H}_5)$.
<u>ld</u>	∨ _{C=0} : 1702	$\delta(\texttt{CDCl}_3) : 1.10 \; (\texttt{3H,s,C}\underline{\texttt{H}}_3); \; 1.40 - 2.10 \; (\texttt{6H,m,(C}\underline{\texttt{H}}_2)_3); \; 2.20 - 2.60 \; (\texttt{2H,m,C}\underline{\texttt{H}}_2\texttt{C=0});$
	∨ _{OH} : 3450	3.53 (2H,s, $C\underline{H}_2$ OH); 3.40-3.50 (1H,s,br,O \underline{H}).
<u>lf</u>	∨ _{C=0} : 1702	$\delta(\text{CDCl}_3)$: 1.06 (6H,d,J=6.2Hz,CH($\frac{\text{CH}}{3}$) ₂); 1.20 (6H,s,($\frac{\text{CH}}{3}$) ₂); 3.11 (1H,septet,
	v _{он} : 3480	$J=6.2Hz, C\underline{H}(CH_3)_2$; 3.56 (2H,s,br,C \underline{H}_2); 2.62 (1H,s,br,O \underline{H}).
13	∨ _{C=0} : 1718	$\delta(\texttt{CDCl}_3) : 1.10 \; (\texttt{12H,s,2x(CH}_3)_2); \; 2.11 \; (\texttt{6H,s,2xCH}_3\texttt{C=0}); \; 3.45 \; (\texttt{4H,s,2xCH}_2\texttt{0});$
		4.55 (2H,s,O-С <u>Н</u> ₂ O).
14	∨ _{OH} : 3300	$\delta(\mathtt{CDC1}_3): 0.81 \ (\mathtt{3H,s,CH}_3); 0.85 \ (\mathtt{3H,s,CH}_3); 3.52 \ (\mathtt{2H,s,CH}_2); 3.51 \ (\mathtt{1H,s,br,});$
		$0\underline{H}$); 3.89 (1H,d,J=3.2Hz,O \underline{H}); 4.61 (1H,d,J=3.2Hz,C \underline{H} -OH); 7.33 (5H,s,C $_{6-5}^{H}$).
<u>15</u>	-	$\delta(\text{CDC1}_3)$: 0.69 (3H,s,CH ₃); 0.95 (3H,s,CH ₃); 3.49 and 3.67 (2H,2xd,AB,J=11Hz,
		$\underline{\text{CH}}_2$); 4.33 (1H,s, $\underline{\text{CH}}$ -0); 4.78 and 5.22 (2H,2xd,AB,J=6Hz,O- $\underline{\text{CH}}_2$ -0); 7.27 (5H,s,
		C ₆ H ₅).
16	v _{он} : 3370	$\delta(\text{CDCl}_3); 0.92 \text{ (6H,s,}(\text{CH}_3)_2); 0.95 \text{ and 0.99 (6H,2xd,J=6.4Hz,CH}(\text{CH}_3)_2); 3.27$
		$(2H,s,CH_2); 3.20-3.70 (3H,m,OH+CHOH); 1.40-2.20 (1H,m,CH(CH_3)_2).$
<u>l l a</u>	∨ _{C=0} : 1717	$\delta(\mathtt{CDC1}_3) \; : \; 1.20-2.00 \; (\mathtt{10H,m,(C\underline{H}_2)}_5); \; \; 2.10 \; (\mathtt{3H,s,C\underline{H}_3C=0}); \; \; 2.45 \; (\mathtt{3H,s,C\underline{H}_3C_6H_4});$
		4.07 (2H,s, $C_{\frac{H}{2}}$); 7.38 and 7.80 (4H,2xd,AB,J=8Hz, $C_{\frac{6H}{4}}$).
<u>11b</u>	$v_{C=0}$: 1715	$\delta(\mathtt{CDC1}_3) : 1.14 \ (\mathtt{6H,s,(CH}_3)_2); \ 2.12 \ (\mathtt{3H,s,CH}_3\mathtt{C=0}); \ 2.46 \ (\mathtt{3H,s,CH}_3\mathtt{C}_6\mathtt{H}_4); \ 4.05$
		$(2H,s,C_{-2}^H); 7.40 \text{ and } 7.82 (4H,2xd,AB,J=8.2Hz,C_{6-4}^H).$
<u>11c</u>	ა _{C=0} : 1691	$\delta(\texttt{CDC1}_3) \; : \; 1.32 \; (\texttt{6H,s,(CH}_3)_2); \; 2.37 \; (\texttt{3H,s,CH}_3\text{C}_6\text{H}_4); \; 4.09 \; (\texttt{2H,s,CH}_2); \; 7.00-7.80$
		$(9H, m, C_{6\frac{H}{5}} \text{ and } C_{6\frac{H}{4}}).$
<u>11d</u>	°C=0 : 1718	$5(\mathtt{CDC1}_3): 1.13 \ (\mathtt{3H,s,CH}_3); 1.40-2.00 \ (\mathtt{6H,m,(CH}_2)_3); 2.00-3.60 \ (\mathtt{2H,m,CH}_2\mathtt{CFO});$
		2.41 (3H,s,C \underline{H}_3 C ₆ H ₄); 4.03 (2H,s,C \underline{H}_2); 7.33 and 7.73 (4H,2xd,AB,J=8.4Hz,C ₆ H ₄).

```
v_{C=0}: 1676 \delta(CDCl_3): 1.35 (6H,s,(CH<sub>3</sub>)<sub>2</sub>); 2.39 (3H,s,CH<sub>3</sub>C<sub>6</sub>H<sub>5</sub>); 2.45 (3H,s,CH<sub>3</sub>C<sub>6</sub>H<sub>5</sub>); 4.19
lle
                                 (2H,s,CH_2); 7.00-7.90 (8H,m,2xC_6H_h).
            v_{C=0}: 1710 \delta(CC1_4): 1.15 (6H,s,(CH<sub>3</sub>)<sub>2</sub>); 2.13 (3H,s,CH<sub>3</sub>C=0); 3.85 and 3.99 (2H,2xd,AB,
                                  J=10.2Hz, CH_2).
           v_{\text{C=O}}: 1718 - \delta(\text{CC1}_4): 1.24 - (\text{GH,s,(CH}_3)_2); 2.16 - (3\text{H,s,CH}_3\text{C=O}); 3.48 - (2\text{H,s,CH}_2).
12
           v_{\text{C=0}}: 1713 \quad \delta(\text{CC1}_4): 1.00-2.30 \ (10\text{H},\text{m},(\text{CH}_2)_5); \ 2.12 \ (3\text{H},\text{s},\text{C}\underline{\text{H}}_3\text{C=0}); \ 3.57 \ (2\text{H},\text{s},\text{C}\underline{\text{H}}_2\text{C1}).
10a
            v_{C=0}: 1715 \delta(CC1_4): 1.22 (6H,s,(CH<sub>3</sub>)<sub>2</sub>); 2.17 (3H,s,CH<sub>3</sub>C=0); 3.63 (2H,s,CH<sub>2</sub>).
10ь
           v_{C=0}: 1683 \delta(CDC1_3): 1.40 (6H,s,(CH<sub>3</sub>)<sub>2</sub>); 3.77 (2H,s,CH<sub>2</sub>); 7.20-7.80 (5H,m,C<sub>6</sub>H<sub>5</sub>).
10c
           v_{C=0}: 1712 \delta(CDCl_3): 1.21 (3H,s,C\underline{H}_3); 1.60-2.10 (6H,m,(C\underline{H}_2)<sub>3</sub>); 2.10-2.60 (2H,m,C\underline{H}_2C=0);
10d
                                  3.67 (2H,s,CH<sub>2</sub>).
           v_{C=0}: 1675 \delta(CC1_4): 1.42 (6H,s,(CH<sub>3</sub>)<sub>2</sub>); 2.39 (3H,s,CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>); 3.73 (2H,s,CH<sub>2</sub>); 7.14 and
10e
                                  7.56 (4H,2xd,AB,J=8.2Hz,C_6 \frac{H_A}{L_A}).
            v_{C=0}: 1712 \delta(CDCl_3): 1.09 (6H,d,J=6.6Hz,CH(\underline{CH}_3)<sub>2</sub>); 1.28 (6H,s,(\underline{CH}_3)<sub>2</sub>); 3.17 (1H,septet,
                                  J=6.6Hz, CH(CH_3)_2); 3.70 (2H,s, CH_2).
```

Table 3. 13 C-NMR Spectral Data (δ , CDCl $_3$) of β -Hydroxyketones $\underline{1}$, β -Tosyloxyketones $\underline{11}$ and β -Haloketones $\underline{10}$ and $\underline{12}$.

			R ₂ =R ₃ =							
Com- pound ^a	<u>C</u> =0 (s)	<u>C</u> H ₃ C=0 (q)	сн ₃ с(<u>с</u> н ₃) ₂ (q)	CR ₂ R ₃ (s)	CR ₂ R ₃ CH ₂ (t)	<u>C</u> o, <u>C</u> m (q)	<u>C</u> q (s)	<u>C</u> p	<u>с</u> н ₃ с ₆ н ₄ sо ₂ (q)	Others
<u>la</u>	214.5	26.1	-	53.9	67.7	-	-	_	-	29.9; 25.9 and 22.4 (3xt,
										$(\underline{CH}_2)_5$).
<u>1b</u>	214.2	25.7	21.6	49.6	69.4	-	-	-	-	-
<u>1c</u>	209.4	-	22.8	49.2	70.3	131.1 ^c	138.2	127.7 ^c	-	
!						128.1°		(d)		
<u>ld</u>	217.8	-	_	50.2	68.9	-	-	-	-	39.0; 35.6; 27.3 and 20.8
										(4xt,(CH ₂) ₄); 20.2 (q,
										<u>CH</u> ₃).
<u>lf</u>	220.9	-	21.2ª	49.8	69.3	-	_	-	_	19.9 ^a (q,CH(<u>C</u> H ₃) ₂); 34.5
_										- 3 2 (d, <u>C</u> H).
<u>13</u>	212.0	25.7	21.9	48.3	74.8	-	-	-	-	95.9 (t,0- <u>C</u> H ₂ -0).
14	_	-	22.8	38.9	71.9	127.7 ^c	141.5	127.7 ^c	_	82.0 (d, <u>C</u> H).
			19.0			127.4 ^c		(d)		
<u>15</u>	_	_	22.1	34.7	78.4	127.5 ^c	137.9	127.2 ^c	-	94.6 (t,0- <u>C</u> H ₂ -0); 87.2
_			18.6			127.4 ^c				(d, <u>C</u> H).

a) The substitution pattern is given in Table 1 or in the schemes. b) $R_1 = R_2 = R_3 = Me$.

		 .					<u> </u>			
16	-	-	23.3ª	39.2	73.4	-	-	-	-	83.3 (d, <u>C</u> H); 29.2 (d, <u>C</u> H
										$(CH_3)_2$; 19.7 ^a and 16.7 ^a
										$(2xq,C(\underline{CH}_3)_2).$
<u>11a</u>	209.9	26.0	-	51.4	73.5	129.9	145.0	132.6	21.6	22.0; 25.5 and 29.8 (2xt,
						127.9		(s)		$-(\underline{CH}_2)_5^{-}$.
<u>11b</u>	210.0	25.3	21.4	47.6	75.0	129.9	145.0	132.6	21.6	-
·						127.9		(s)		
11c	205.3	-	22.8	47.6	75.7	129.8	144.8	132.8	21.5	-
						127.8	137.6	131.3 ^c		
						128.2°		(d+s)		
						127.5 ^c				
<u>11d</u>	211.9	-	-	48.4	74.5	129.8	144.8	132.6	21.5	20.0 (q, <u>C</u> H ₃); 20.5; 26.7;
						127.9		(s)		35.4 and 38.4 (4xt,
										$(\underline{CH}_2)_4$).
lle	204.5	-	23.0	47.5	75.9	129.8	144.8	132.7	21.6	21.4 (q, <u>C</u> H ₃ C ₆ H ₄).
								(s)		
						128.0	142.1	134.6		
								(s)		
						128.9				
						128.0				
<u>9</u> b	210.8	25.6	21.8	47.9	67.4	-	-	-	-	-
12	209.7	25.2	23.5	48.5	41.0		-	-	-	-
<u>10a</u> d	208.1	25.9	-	52.8	50.1	-	-	-	_	31.3; 25.3 and 22.5 (3xt,
										-(CH ₂) ₅ -).
10ъ	210.0	25.4	22.7	49.2	51.7	-	-	-	-	-
10c	206.2	-	24.1	49.3	52.5	131.0 ^c	138.4	127.3 ^c	-	-
						128.2°		(d)		
10d	212.6	-	_	49.8	51.3	-	_	-	_	38.8; 36.4; 27.0 and 21.0
										(4xt,-(<u>C</u> H ₂) ₄ -); 21.3 (q,
										(<u>C</u> H ₃).
10e	205.2	-	24.2	49.1	52.8	128.9	141.7	135.3	-	21.3 (q, <u>C</u> H ₃ C ₆ H ₄).
						127.8		(s)		J 0 4
10f	216.6	_	22.8	49.9	52.1	_	-	_	_	34.8 (d, <u>C</u> H); 20.2 (q,
										CH(<u>C</u> H ₃) ₂).
										- 3 2

a) The substitution pattern is given in Table 1 or in the schemes. b) $R_1 = R_2 = R_3 = Me$. c) Or vice versa. d) The 13 C-NMR spectrum was recorded in C_6D_6 in order to avoid overlapping of the $\underline{\text{CH}}_3\text{C=O}$ and the $\underline{\text{CH}}_2$ signals.

the preparation of large quantities of β -haloketones with two substituents in the α -position was developed starting from ketones via acid-catalyzed hydroxymethylation and substitution of the hydroxyl group by chlorine or bromine.

EXPERIMENTAL SECTION

¹H-NMR spectra were measured with a Varian T-60 NMR spectrometer, while ¹³C NMR spectra were obtained with a Varian FT 80 NMR spectrometer. IR spectra were performed with a Perkin-Elmer model 1310 spectrophotometer and mass spectra were measured with a Varian-Mat model 112 mass spectrometer. Satisfactory elemental analyses were performed for all new compounds. Elemental analyses were performed by the Laboratory of Soil Physics and the Laboratory of Agrochemistry (University of Gent).

Preparation of β -Hydroxyketones 1. General Procedure. A mixture of 0.1 mol of ketone $\overline{2}$, 0.2 mol of trifluoroacetic acid and 0.1-0.2 mol of paraformaldehyde was stirred under reflux during several hours (Table 1, entries 1-15). When the reaction was complete (control 1 H-NMR), the mixture was poured carefully into a saturated sodium bicarbonate solution (100 ml). The mixture was stirred overnight (14-20 hrs) and afterwards extracted four times with each 100 ml of dichloromethane. The combined extracts were dried (MgSO₄) and, after removal of the solvent under vacuo, the residual reaction mixture was distilled in vacuo to give pure β -hydroxyketones $\underline{1}$ in good yields. The spectral data of β -hydroxyketones $\underline{1}$ are given in Tables 2 and 3.

Preparation of β -Tosyloxyketones 11. General Procedure. To a solution of 0.1 mol of β -hydroxyketone 1 in pyridine (10% solution), 0.11 mol p-toluenesulfonyl chloride was added under vigorous stirring and under cooling with a waterbath. After stirring at room temperature during several hours (Table 1, entries 16-21), the reaction mixture was poured into 1 liter of 10 N

hydrochloric acid. The acidic solution was extracted with carbon tetrachloride (4 x 150 ml). After drying of the combined extracts (MgSO₄) and after removal of the solvent, the residue was treated with 100 ml ether. The solution was cooled to -30°C in the refrigerator during several hours and the solid β -tosyloxyketones 11 were isolated in high yields by filtration. The spectral data of β -tosyloxyketones 11 are presented in Tables 2 and 3.

Preparation of β -Chloroketones 10. General Procedure. To a solution of 0.1 mol of β -tosyloxyketone 11 in dimethylformamide (DMF) (10 % solution), two equivalents of lithium chloride were added. After reflux during several hours (Table 1, entries 27, 28,30-34), the reaction mixture was poured into 1 liter of 10 N hydrochloric acid. The acidic solution was extracted with carbon tetrachloride (5 x 150 ml), and the combined extracts were dried (MgSO₄). After evaporation of the solvent, the reaction mixture was distilled under vacuo to afford β -chloroketones 10. The spectral data of β -chloroketones 10 are reported in Tables 2 and 3.

Preparation of β -Bromoketone 12. General Procedure. To a solution of 0.1 mol of β -tosyloxyketone 11b in 100 ml 2-butanone, two equivalents of lithium bromide were added. After reflux during several hours (Table 1; entry 29) the reaction mixture was poured into 1 liter of water. After extraction with dichloromethane (4 x 100 ml), the combined extracts were dried (MgSO₄) and the solvent was evaporated. The reaction mixture containing ketone 12 was not distilled because this compound decomposes partially during distillation. The compound was of sufficient

purity (\geqslant 97 %; checked by ¹H-NMR) for further elaboration. The spectral data of β -bromoketone <u>12</u> are reported in Tables 2 and 3.

REFERENCES

- Present address: Laboratory of Chemical Products, DSM Limburg b.v., 6160 MB Geleen, The Netherlands.
- * N. De Kimpe: "Senior Research Associate" (Onderzoeksleider) of the Belgian "National Fund of Scientific Research" -National Fonds voor Wetenschappelijk Onderzoek); to whom correspondance should be addressed.
- W. Kraemer, H. L. Elbe, K. H. Buechel and M. Plempel (Bayer A.-G.), Ger. Offfen. DE 3.021. 581 (Cl. A61K31/41), Dec. 1981, Appl. Jun. 1980; Chem. Abstr., 96, 181291w (1982).
- E. Regel, K. H. Buechel, K. Luerssen, P. E. Frohberger and W. Brandes (Bayer A.-G.), Eur. Pat. Appl. EP 44,425 (Cl. C07D249/08), Jan. 1982, DE Appl. 3,025,242, Jul. 1980; Chem. Abstr., 96, 181293y (1982).
- E. Regel, K. H. Buechel, K. Luerssen, P. E. Frohberger and W. Brandes (Bayer A.-G.), Ger. Offen. DE 3,025,242 (Cl. C07D249/08), Jan. 1982, Appl. Jul. 1980; Chem. Abstr., 96, 142865s (1982).
- W. Kraemer, H. L. Elbe, K. H. Buechel, W. Brandes and P. E. Frohberger (Bayer A.-G.) Ger. Offen. DE 3,021,551 (Cl. C07F249/08), Dec. 1981, Appl. Jun. 1980; Chem. Abstr., 96, 122806v (1982).
- W. Kraemer, K. H. Buechel, M. Plempel and I. Haller (Bayer A.-G.), Ger. Offen. 2,811,916 (Cl. A61K31/415), Sep. 1979, Appl. Mar. 1978; Chem. Abstr., 92, 111018f (1980).
- L. Fitjer and W. Lüttke, Chem. Ber., 105, 907 (1972).
- 7. W. C. Lumma, Jr. and O. H. Ma, J. Org. Chem., 35, 2391 (1970).
- E. Cros, I. Elphimoff-Felkin and P. Sarda, C. R. Acad. Sci. Paris (C), 286, 261 (1978).
- R. C. Fuson, W. E. Ross and C. H. McKeever, J. Am. Chem. Soc., 60, 2935 (1938).
- N. H. Cromwell, D. S. Soriano and E. Doomes, J. Org. Chem., 45, 4983 (1980).
- 11. D. Barlocco and G. Gignarella, Synthesis, 876 (1985).
- 12. G. A. Odoeva, T. P. Memekh, G. L. Epstein and E. G. Sotchilin, Zh. Org. Khim., 4, 1684 (1968); Chem. Abstr., 69, 106122 (1968).
- O.C. Dermer and J. Newcombe, J. Am. Chem. Soc., <u>74</u>, 3417 (1952).

- 14. C. H. De Puy, W. C. Arney, Jr. and D. H. Gibson, ibid., 90, 1830 (1968).
- 15. J. W. Wilt and J. W. Hill, J. Org. Chem., 26, 3523 (1961).
- 16. C. H. De Puy and R. J. Van Lanen, ibid., 39, 6360 (1974).
- 17. C. R. Johnson and R. W. Herr, ibid., 38, 3153 (1973).
- C. R. Johnson, C. J. Cheer and D. J. Goldsmith, ibid.,
 29, 3320 (1964).
- H. H. Wasserman, M. J. Hearn and R. E. Cochoy, ibid., <u>45</u>, 2874 (1980).
- 20. S. Julia and C. Gueremy, Bull. Soc. Chim. Fr., 2994 (1965).
- 21. V. R. Kartashov, V. P. Pushkarev, I. V. Bodrikov and K. N. Tishkov, Zh. Org. Khim., 7, 1570 (1971); Chem. Abstr., 75, 151146b (1971).
- 22. I. V. Bodrikov, V. R. Kartashov and T. I. Temnikova, ibid., 3, 669 (1967); Chem. Abstr., 67, 43500p (1967).
- 23. V. R. Kartashov and I. V. Bodrikov, ibid., 2, 1120 (1966); Chem. Abstr., 65, 15218 (1966).
- 24. V. R. Kartashov, V. P. Pushkarev and I. V. Bodrikov, ibid., 7, 1574 (1971).
- 25. C. L. Karl, E. J. Maas and W. Reusch, J. Org. Chem., <u>37</u>, 2834 (1972).
- 26. Y. Ishii, K. Yamawaki, T. Yoshida, T. Ura and M. Ogawa, J. Org. Chem., <u>52</u>, 1868 (1987).
- 27. U. Schwenk and A. Becker, Justus Liebigs Ann. Chem., <u>706</u>, 95 (1967).
- 28. P. K. G. Hodgson and S. Warren, J. Chem. Soc. Perkin Trans. 2, 372 (1975).
- 29. K. Lucas, P. Weyerstahl, H. Marschall and F. Nerdel, Chem. Ber., 104, 3607 (1971).
- 30. T. I. Temnikova, N. A. Venediktova and V. S. Karavan, Zh. Org. Khim 8, 1214 (1972); Chem. Abstr. 77, 113653y (1972).
- 31. A. G. Robinson and A. W. McCollum, U.S. US 3692801, 19 Sep 1972, Appl. or Pr. 72, 839, 16 Sep 1970; Chem. Abstr. 78, 44203h (1973).
- 32. K. Soai; S. Niwa, T. Yamanoi, H. Hikima and M. Ishizaki, J. Chem. Soc., Chem. Commun. 1018 (1986).
- 33. E. Blume and E. Granzer, (Hoechst A.-G.), Ger. Offen. DE 3235589 A1, 29 Mar 1984, Appl. 3235589, 25 Sep 1982; Chem. Abstr., 101, 90904d (1984).

(Received March 16, 1988; in revised form September 1, 1988)